If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-24t-10=0
a = 1; b = -24; c = -10;
Δ = b2-4ac
Δ = -242-4·1·(-10)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{154}}{2*1}=\frac{24-2\sqrt{154}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{154}}{2*1}=\frac{24+2\sqrt{154}}{2} $
| 5=a-2× | | 5x2+14x-24=0 | | 75x+1575=3000 | | 4(x-2)=2x=6 | | 2x+3=8x+7 | | 5x+x/2=7 | | (2x)+60=(3x+40) | | 2-(x/3)=6-x | | x/6+3x/2=100/2 | | 6t+7=5-4t | | 0,9/x=0,6 | | 78=3(3x-6) | | 21a=-140 | | x/5+4x/4=120/20 | | x^2+3x-177=0 | | -6n-5n=16 | | 6^-3n-3=216 | | 2^-3m-1=2^2m+3 | | 2^-3x=64 | | 12-4x-x2=0 | | 2h^2+160=0 | | 256=(2x)^4 | | (2x+4)=(3x-2) | | (a²-5)²-(2a+3)²=0 | | -3(7+n)=-27 | | 18-5x3+7= | | 9d+3d–d–44d=0 | | 9x-6(6x-1)=3x-6(x+8) | | 9d+3d–d–44d=0 | | -11=8p+3+9p | | 4^(x+4)=6 | | 2x=x/4=x=5 |